site. The laboratory is right now working on a revitalization and re-use project in Matiya.

Shuizo Furusaka’s laboratory work includes: building production systems, and project management and construction management. The laboratory is involved in concurrent building production systems, building technology transfer strategies, international comparison of project management, and the development of Japanese project management systems. This continues the work of Osamu Furukawa’s laboratory, who was the pioneer in Japan of building production systems.

Shigeuyuki Okazaki’s laboratory works on the following issues: architectural planning, architectural space montage technique, simulated pedestrian movement, way-finding and eye movement, optimum allocation of rooms, and way-finding with communication. The Fukui Sun-dome introduced last year was designed by Shigeuyuki Okazaki.

Shuji Funo’s laboratory works on a wide range of issues, and Shuji has personally designed a great many pieces, perhaps more than any other architect in contemporary Japan. His main areas of interest are: area planning and theory, historical and cultural conservation projects, development and research. The laboratory has recently focused on the formation of colonial cities, as well as nativization. The laboratory has compared colonial architectural designs in Indonesia, the Philippines, India, Pakistan, Nepal, Tibet, China, Taiwan, South Korea, South Africa, and Australia.

The laboratory headed by Tadashi Toyama focuses on: human settlement planning during the processes of urbanization in high population-density regions, high levels of technology, and an aging society, as well as technology planning and planning methodology. The aging of Japanese society is an important issue for the country. 25% of the population will be over the age of 65 by the year 2025. Professor Tadashi Toyama’s dissertation in Sweden examined the process of acculturation by elderly as they move from their residences to nursing homes.

The laboratory headed by Mamoru Tohiguchi focuses on: regional environments, small and medium urban design, downtown Kyoto, wooden residences, Asian cities, etc. Mamaru
Tohiguchi's personal research interests are very broad, and has published a great deal of papers in academic journals.

Perhaps the Architecture Department at Kyoto University does not appear to be an architectural department. But academic departments in Japan are very attuned to the trends of the day. Not every academic in the department works on design. For instance, Professor Hidekazu Nishizawa, who has often been invited to teach at Taiwan, originally studied structure, but has participated in a number of historic site renovation projects, including a number of temples in Kyoto as well as cultural structures that were damaged in the Kobe earthquake. Professor Hidekazu Nishizawa has also studied traditional Japanese wood architecture, brick architecture and RC structures. He uses this knowledge to repair and extend the life of cultural and historic sites.

I hope that this brief introduction will help students of architecture in Taiwan to have a better understanding of the Kyoto Architecture Department. [Translated by Jonathan Lassen]
NISHIZAWA HIDEKAzu

Professor, Dr. of Engineering, Architect
Department of Architecture and Environmental
Graduate School of Engineering

京都大學建築系建於1920年，包括：規劃、環境工程及結構三組課程。每組課程又包含好幾項細目。本系在歷史建築，包括神宮及住宅的修繕上也卓然有成。尤其日本大多數的古蹟均集中在京都一帶。

西澤研究室專攻結構，包括地震、鋼構與修繕工程。自1995年阪神地震，本研究室即以實驗進行地震對日本傳統木構造的影響。[翻譯 趙夢琳]

Department of architecture of Kyoto university funded in 1920 has 3 groups of courses as follows: Planning and Design, Architectural Environmental Engineering and Structural Engineering. Each course consists of several divisions. Our department has long played an important role in renovating many historical temples, shrines and dwellings, because the major part of cultural property in Japan is left in Kyoto and the surrounding area Nara, Shiga etc.

Nishizawa laboratory belong to Structural Engineering course and makes special study on Steel structure and Earthquake engineering together with Conservation engineering. Especially, after the Kobe earthquake in 1995, our groupe is engaged in an intensive research on how to evaluate the seismic strength of various kinds of traditional Japanese wooden buildings based on the experimental approach.

Yamamura 住宅(國家級古蹟)

Former Yamamura Residence (The national important cultural property)

此住宅於1923年建於Hyogo，為萊特設計的建築住宅，1980年的修復工作主要為增加混凝土基座與樓板對地震的抵抗力。[翻譯 趙夢琳]

This house in HYOGO in prefecture designed by F.L.Wright was build in 1923. In the renovation project in 1980’s, the foundation and floors made of reinforced concrete was repaired and strengthened to improve seismic performance. Although this house is located very close to the epicenter of the Kobe earthquake occurred in 1995, the structural damage was slight due to above stated reinforcement.
京都清水寺三重塔補強（國家級古蹟）
Three Storied Pagoda of Kiyomizu Temple (the national important cultural property)

清水寺建於17世紀初，但由於屋頂結構有缺陷，因此屋頂構造有些下垂。如照片所示，我們利用鋼製懸索來解決多餘的屋瓦重量。[翻譯 趙夢琳]

This wooden pagoda constructed towards the beginning of 17th century has the tendency that the long spreading eaves hanges down owing to some structural defect of the roof system. We have adopted the suspention system using stainless steel rods shown in photos to release the excessive load of the heavy roof tiles.

奈良藥師寺大講堂
Great Lecture Hall of Yakushiji Temple

建於七世紀的藥師寺已被認定為世界級的古蹟。木製的講堂公認為二次大戰後最大的傳統木構造。本研究室利用許多傳統日本木構造的技術來加強奈良藥師寺的避震能力。[翻譯 趙夢琳]

Yakushiji was built in 7th century and is registered as the world heritage. This great lecture hall is said the largest wooden traditional building constructed after the World War 2. Our research group has developped various kinds of seismic reinforcement system based on the Japanese traditional wooden construction techniqus.